TECHNICAL NOTE

Evaluation of a Wing-Type Against a Bucket-Type Fruit Fly Trap for Use in Table Grape Vineyards

A. Schwartz and D. Capatos

1) Nietvoorbij Institute for Viticulture and Oenology (Nietvoorbij), Private Bag X5026, 7599 Stellenbosch, Republic of South Africa
2) Biometric Services, Winter Rainfall Region, Private Bag, 7607 Eelsenburg, Republic of South Africa

Submitted for publication: March 1994
Accepted for publication: June 1994
Key words: Fruit fly traps, table grapes, Ceratitis capitata, Ceratitis rosa

Fruit fly is one of the key pests in the production of table grapes in the Western Cape. Two species of fruit fly are involved, viz. Mediterranean fruit fly [Ceratitis capitata (Wied.)] and Natal fruit fly [Ceratitis rosa (Karsch)]. A recent report by Unifruco (1993) indicates that 45 800 export cartons from the 1992/93 crop were rejected as a result of fruit fly damage.

Current fruit fly control measures consist principally of toxic bait applications, backed by decision-making information obtained from a fruit fly trap. Since a fruit fly trap is an essential part of the total strategy against fruit fly on table grapes, it was decided to evaluate the effectiveness of the standard trap against that of a new imported trap.

MATERIALS AND METHODS

The standard fruit fly trap (wing-type) was evaluated against a new (bucket-type) trap on table grapes. From an initial value of 47.7%, relative effectiveness, the standard trap showed a sharp decline during the second to fourth week and reached zero within a period of eight weeks. Both the linear and quadratic terms of the regression curve of relative effectiveness against time were statistically significant. It is suggested that the standard type of trap be replaced by the new bucket-type fruit fly trap.

RESULTS AND DISCUSSION

Both species of fruit fly, i.e., C. capitata and C. rosa, were attracted to both trap designs. However, C. capitata was the dominant species recorded, with C. rosa accounting for approximately 20% of the catch.

The number of flies caught in either kind of trap (totalled over all three replications) ranged from 44 to 257 per week (Fig. 2). Over the eight-week period of this trial the relative effectiveness of the standard trap (averaged over three replications) declined from 47.7% to 0.0% (Fig. 2). Apart from a slight increase from 3.2% to 4.7% between the 4th and 5th weeks, there was a progressive decline of observed relative effectiveness against time. A fitted quadratic regression curve of relative effectiveness against time gave a good approximation of the observed decline. Both the linear and quadratic terms of the regression curve were statistically significant. This proves that the observed decline was statistically significant and also that the rate of decline decreased significantly over the experimental period. Although replacement of the rubber septum in the standard trap is usually needed after six weeks, the poor performance of the trap was already evident after two to three weeks of testing.

It appears that the inferior performance of the standard trap during this trial could be ascribed to trap design or quantity of chemical attractant or a combination of these factors.

CONCLUSIONS

Under the conditions of this trial, the standard trap was much less effective than the new one.

The exceptionally high losses for export table grapes during 1993, due to fruit fly damage, underline the urgency for improvement of control measures in vineyards. One way of reaching this goal is to make available a more efficient fruit fly trap. It was demonstrated that the new bucket-type trap satisfies this requirement.

FIGURE 1
Test traps: Wing-type (left) – Bucket-type (right).

FIGURE 2
Relative effectiveness of the standard fruit fly trap (wing-type) in relation to the new trap (bucket-type); n = total number of fruit flies caught over both kinds of traps.